Valaxy 测试 a,b,ca,b,ca,b,ca2+b2=c2a^2+b^2=c^2a2+b2=c2度量空间: 设 XXX 为一个集合, 一个映射 d:X×X→Rd:X\times X\rightarrow \mathbb{R}d:X×X→R. 对于 ∀x,y,z∈X\forall x,y,z\in X∀x,y,z∈X, 有(1) (正定性) d(x,y)≥0d(x,y) \ge 0d(x,y)≥0, 且 d(x,y)=0d(x,y) = 0d(x,y)=0 当且仅当 x=yx = yx=y;(2) (对称性) d(x,y)=d(y,x)d(x, y) = d(y ,x)d(x,y)=d(y,x)\(3) (三角不等式) d(a,b)+d(b,c)≥d(a,c)d(a, b) + d(b, c) \ge d(a, c)d(a,b)+d(b,c)≥d(a,c)